Improving Computer Lipreading via DNN Sequence Discriminative Training Techniques
نویسندگان
چکیده
Although there have been some promising results in computer lipreading, there has been a paucity of data on which to train automatic systems. However the recent emergence of the TCDTIMIT corpus, with around 6000 words, 59 speakers and seven hours of recorded audio-visual speech, allows the deployment of more recent techniques in audio-speech such as Deep Neural Networks (DNNs) and sequence discriminative training. In this paper we combine the DNN with a Hidden Markov Model (HMM) to the, so called, hybrid DNN-HMM configuration which we train using a variety of sequence discriminative training methods. This is then followed with a weighted finite state transducer. The conclusion is that the DNN offers very substantial improvement over a conventional classifier which uses a Gaussian Mixture Model (GMM) to model the densities even when optimised with Speaker Adaptive Training. Sequence adaptive training offers further improvements depending on the precise variety employed but those improvements are of the order of 10% improvement in word accuracy. Putting these two results together implies that lipreading is moving from something of rather esoteric interest to becoming a practical reality in the foreseeable future.
منابع مشابه
Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملGMM-Free Flat Start Sequence-Discriminative DNN Training
Recently, attempts have been made to remove Gaussian mixture models (GMM) from the training process of deep neural network-based hidden Markov models (HMM/DNN). For the GMM-free training of a HMM/DNN hybrid we have to solve two problems, namely the initial alignment of the frame-level state labels and the creation of context-dependent states. Although flat-start training via iteratively realign...
متن کاملBuilding DNN acoustic models for large vocabulary speech recognition
Understanding architectural choices for deep neural networks (DNNs) is crucial to improving state-of-the-art speech recognition systems. We investigate which aspects of DNN acoustic model design are most important for speech recognition system performance, focusing on feed-forward networks. We study the effects of parameters like model size (number of layers, total parameters), architecture (co...
متن کاملOn Improving Acoustic Models for TORGO Dysarthric Speech Database
Assistive technologies based on speech have been shown to improve the quality of life of people affected with dysarthria, a motor speech disorder. Multiple ways to improve Gaussian mixture model-hidden Markov model (GMM-HMM) and deep neural network (DNN) based automatic speech recognition (ASR) systems for TORGO database for dysarthric speech are explored in this paper. Past attempts in develop...
متن کاملExploiting Eigenposteriors for Semi-Supervised Training of DNN Acoustic Models with Sequence Discrimination
Deep neural network (DNN) acoustic models yield posterior probabilities of senone classes. Recent studies support the existence of low-dimensional subspaces underlying senone posteriors. Principal component analysis (PCA) is applied to identify eigenposteriors and perform low-dimensional projection of the training data posteriors. The resulted enhanced posteriors are applied as soft targets for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017